Strategies for Developing Copper Plating Systems


Reading time ( words)

I met with Dr. Albert Angstenberger, global technology manager for metallization with MacDermid Enthone Electronics Solutions, while at SMTA International. He presented a most interesting paper on copper pillar plating systems that we hope to publish in The PCB Magazine sometime in the future.

Patty Goldman: Albert, I understand you presented a paper here on copper pillar plating systems. How was it received?

Albert Angstenberger: Yes, that’s correct. It went well. To some extent I think I overshot the audience, maybe the firework was too big, because to me it seemed like these people would be to some extent stunned.

Goldman: Tell me about the paper. What was it about?

Angstenberger: It was about copper plating, particularly the strategies, how we develop new plating chemistry for electroplating, copper metallization of printed circuit boards and organic substrates or silicons. Getting away the heat and coping with the speed.

Right now, we have merged MacDermid and Enthone, so at the end of the day we have combined our capabilities and our strengths. As far as metallization and copper plating is concerned, we're covering almost every aspect of interconnect technology—starting from the die, rerouting the die down to the printed circuit board and with all the intermediate steps. My paper was dealing with the copper plating of whatever kind of substrate.

So, it's all about our company's strategies, technical strategies, what we do to develop suitable plating chemistry for successfully copper-plating very tiny through-holes, and a very tiny bump-up to microscopic through-holes.

Goldman: Tell me more about the thermal management part of it.

Angstenberger: One of the two most important aspects is to get the heat away from the die, through the various substrates, through the printed circuit board and out into the environment. That's one aspect. The other aspect is to provide very fast interconnections—frequency. So, the shortest interconnections from the die through the substrate to the exterior to the interfaces without any major concerns, as far as parasitics are concerned, like undistorted signal propagation.

When I grew up in that industry, we did a lot of wire bonding. To some extent, it was a painful exercise because once you wire bond, in particular with high-frequency applications, you had to consider the signal losses or parasitic effects, like capacitance or inductance issues. Right now, our whole industry is in a very good technological position to provide very fast, very short tracks for signal propagation, as well as to get away the heat. This doesn’t just relate to the high-frequency applications but also to simple technological applications like LEDs, for instance.

Goldman: They make a lot of heat.

Angstenberger: Yes, they do. The hotter they get, the more they degrade over time. In my younger days, I would have called it the thermal suicide of an integrated circuit. Most of the interconnect applications are trying to get as much copper pillar or copper bump interconnects to cope with the heat, of course, and to cope with the high-frequency aspects.

Goldman: I find that very interesting. Tell me more about your background.

Angstenberger: I got started in the printed circuit industry in '83 with a small- to medium-sized enterprise in Germany called Leitron. There have been a couple of companies with that name. When we started, it was about 50−60% PCBs going into the computer business. In those days, there was an American company coming up to the market with the first, believe it or not, foldable laptop. It was a very easy catch, not very sophisticated. The company was named Conversion, and they were one of our first and biggest customers where we were providing two-layer, four-layer, even six-layer boards. Prior to that, more of our customers were military, defense, aerospace and space application.

Goldman: You were making the leading-edge boards at the time, right?

Angstenberger: Yes, in those days. I guess it was like '84, '85 when we were probably one of the first companies in the world doing blind  and buried vias, sequential lamination. Of course, just to complete the orchestra we did copper-clad, metal cores, heavy metal copper, 0.3 millimeter, 0.5 millimeter metal cores being incorporated into the board.

After Leitron, I went to Hewlett-Packard on the German side in Boeblingen. When I joined HP, it was like 13 different global printed circuit shops. When I left HP, there was only one left, which was the Boeblingen site. Then I was freelancing for six years or so, working for mostly European big printed circuit shops helping with engineering, helping with troubleshooting and all that. It was in '98 when I joined the company Diehl, which is in defense. I was responsible for development marketing and sales of miniaturized mil spec computers.

And after that I joined Taconic, the PTFE laminate manufacturer for some nine years . I took one year off because I had my spine screwed together due to some kind of misalignment. Then about four years ago some headhunters grabbed me by the hair for MacDermid. I'm global technology manager for metallization, so I act as an interface between the customer’s new requirements and our applications, our R&D, etc. The easiest way to describe it is like I’m a spokesman.

Goldman: Well, that’s quite a career. Anything more about your paper or thermal management that you'd like to add?

Angstenberger: Not necessarily. What I was trying to provide people with is a thread about the strategy and how to get the heat away from the die through the environment. Also, how to improve electrical or signal characteristics. On the other hand, it was also to tell the people something about our strategies and what we do to provide very effective, well-functioning electroplating and copper plating products.

Goldman: Albert, thank you.

Angstenberger: You're welcome.

Share


Suggested Items

Excerpt: The Printed Circuit Designer’s Guide to…Flex and Rigid-Flex Fundamentals

06/20/2018 | Dave Lackey and Anaya Vardya, American Standard Circuits
The design process is arguably the most important part of the flex circuit procurement process. The decisions made in the design process will have a lasting impact, for better or worse, throughout the manufacturing cycle. In advance of providing important details about the actual construction of the flex circuit, it is of value to provide some sort of understanding of the expected use environment for the finished product.

The Institute of Circuit Technology Annual Symposium 2018

06/18/2018 | Pete Starkey, I-Connect007
ICT technical director Bill Wilkie is well-known for choosing notable venues for Institute of Circuit Technology events, and his choice for this year’s Annual Symposium was the National Motor Museum, located in the village of Beaulieu in the heart of the New Forest, a national park in the county of Hampshire in Southern England. The region is known for its heathland, forest trails and native ponies.

Experts Discussion with John Talbot, Tramonto Circuits

06/06/2018 | I-Connect007 Editorial Team
For this first issue of Flex007 Magazine, we interviewed John Talbot, president and owner of Tramonto Circuits. Headquartered in metro Minneapolis, Minnesota, Tramonto manufactures flexible and rigid PCBs for a variety of industry segments. Editors Andy Shaughnessy, Patty Goldman and Stephen Las Marias asked John to discuss the challenges and opportunities in the world of flexible circuits, and some of the trends he’s seeing in this market.



Copyright © 2018 I-Connect007. All rights reserved.