Designing Electronics for Harsh Conditions


Reading time ( words)

We expect a lot from our products, especially our electronic products. Think about it: cellphones, wearables, medical devices—for some reason we think they should still work after being immersed in liquid, left outdoors in freezing temperatures or dropped on concrete from a standing position.

Sometimes that's the case. We drop a smartphone in the bathtub then stick it in a bag of rice and hope for the best. Many times, though, not even Uncle Ben's can save your poor, ill-treated phone. But that wasn't because the designer didn't anticipate your fumble.

Any product designer worth their salt is going to design products to protect the electronics to withstand any abuse you can think of—and much more. Take that smartphone or laptop computer for example. The product has to work whether the user is at a desk in Atlanta, a warehouse in California or a factory floor in Vietnam.

The Swedish company Handheld makes everything from rugged handheld devices to high-performance rugged tablets. The products usually look and operate like their everyday counterparts, but you might find them a little heavier or bulkier. The differences typically rest on tweaks in design and adjustments in materials used to make the product. 

The Handheld website is chock full of great information on how they create rugged products. Here are some of the ways they build computers for rugged use:

  • Rather than using rotating hard drives, their computers have solid-state drives that are resistant to physical shock.
  • Their computers contain stiffeners, often made from aluminum, to prevent interior components and boards from flexing on impact. The outer case and bumpers are designed to absorb the energy from a drop, minimizing internal damage. 
  • Rugged computers displays use chemically strengthened glass to prevent scratches or cracks. The display is backlit to improve readability when outdoors. 
  • Some computers include internal heaters for operation in extremely cold temperatures. The heater is able to get rid of condensation that can happen during a temperature change. 

Designing electronics for harsh conditions requires understanding the environment in which the product will operate, the customer's requirements, and common industry standards or specifications.

Examples of Harsh Conditions

  • Extreme temperatures, both hot and cold
  • Temperature variations
  • Dust and other particulates
  • Combustible conditions
  • Moisture, humidity or submersion
  • Regular or irregular vibration
  • Sudden or continuous impact
  • Power surges, either natural (i.e. lightning) or man-made

Questions to Ask

  1. What is the product used for?
  2. Where will it be used?
  3. Are there temperature extremes?
  4. How wide are temperature fluctuations?
  5. Does this product need to be watertight or airtight?
  6. How tight do those seals need to be?
  7. What sort of physical pressure does it need to withstand?
  8. How hard does the case need to be?
  9. How light does it need to be?
  10. Does the product need to be built to specific standards, i.e. Ingress Protection (IP), National Electrical Manufacturers Association (NEMA), Potentially Explosive Atmosphere (ATEX)?

Spec Standards

Products designed for harsh environments might have to meet the following standards:

Ingress Protection (IP) covers both moisture and particulates.

IP ratings are displayed using two digits. The first digit signifies the rating for dust/particulates, the second digit signifies the rating for liquids.

MIL STD 810g is a standard used by the U.S. military to test equipment in a variety of extreme conditions or shocks.

What is Required by MIL STD 810G?

The MIL STD 810g standard includes 28 different testing methods in scenarios that include:

  • High temperature
  • Low Temperature
  • Rain
  • Humidity
  • Sand/Dust
  • Immersion
  • Vibration 
  • Shock

Although this standard was initially created for products designed for military applications, MIL STD 810g has made its way into commercial application as well. However, no commercial organizations or agencies actually certify for MIL STD 810g. Chassis Plans, a producer of rugged computers and LCD displays for the military, produced an interesting white paper explaining MIL STD 810g, and how it has been applied (and misapplied) in commercial settings.

Share




Suggested Items

Bright Lights, Big City: STEM Event Kicks Off

01/26/2023 | I-Connect007 Editorial Team
The San Diego sun was warm and bright on Wednesday afternoon, but it didn’t stop the crowds from filling the aisles at IPC APEX EXPO 2023 for the trade show’s second official day. Technical conferences, professional development courses, and a keynote from IPC President and CEO John W. Mitchell kept attendees busy. But the real highlight of the day was upstairs where approximately 300 high school students from the local San Diego area rode buses to the San Diego Convention Center for a day full of activities meant especially for them.

STEM Program: Evolving and Growing

01/16/2023 | Charlene Gunter du Plessis, IPC Education Foundation
IPC has a responsibility to its current members but also in attracting and retaining new talent to the electronics manufacturing industry. This is no more evident than in the STEM event hosted by the IPC Education Foundation at IPC APEX EXPO. For the 2023 event, more than 500 students from nearly a dozen high schools are expected to participate in hands-on activities, touring the show floor, and learning from industry experts. The Career Panel Luncheon will expand across the in-person event as we broadcast and stream to schools across the United States.

Five-Star Reflow Recipes: Q&A With Rob Rowland

12/28/2022 | Andy Shaughnessy, I-Connect007
In this Q&A, Rob Rowland, director of engineering at Axiom Electronics, discusses his new IPC APEX EXPO Professional Development course, “Reflow Profiling Simplified,” on how to create a standardized methodology to accurately generate new reflow soldering profiles. Rob explains, “In this class, I’ll explain how I approached this work to help others develop similar methodologies for creating their own reflow soldering profiles. My presentation also includes the basic reflow profile recipes I have been using for the past 20 years.”



Copyright © 2023 I-Connect007 | IPC Publishing Group Inc. All rights reserved.